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A B S T R A C T

Previous studies using multi-voxel pattern analysis have decoded the content of participants' delayed intentions
from patterns of fMRI data. Here we investigate whether this technique can be used to decode not only partic-
ipants' own intentions, but also their representation of the intentions held by other people. In other words: if Sam
is thinking about Hoki, can we decode the content of Hoki's intention by scanning Sam's brain? We additionally
distinguished two components of intentions: action-plans versus goals, and included novel control analyses that
allowed us to distinguish intending an outcome from simply expecting it to occur or simulating its consequences.
Regions of frontal, parietal, and occipital cortex contained patterns from which it was possible to decode in-
tentions of both self and other. Furthermore, crossclasification between self and other was possible, suggesting
overlap between the two. Control analyses suggested that these results reflected visuo-spatial processes by which
intentions were generated in our paradigm, rather than anything special about intentions per se. There was no
evidence for any representation of intentions as mental states distinct from visuospatial processes involved in
generating their content and/or simulating their outcomes. These findings suggest that the brain activity patterns
decoded in intention-decoding fMRI studies may reflect domain-general processes rather than being intention-
specific.
Introduction

What are intentions, and how do they relate to patterns of brain ac-
tivity? The term intention is used in various ways in everyday language
and is “notoriously difficult” to define (Pacherie and Haggard, 2010).
Nevertheless, recent neuroimaging studies have investigated their un-
derlying brain mechanisms, including several using pattern classification
techniques as a method for “decoding intentions”. In this study we
attempt to extend these findings by asking whether we can decode par-
ticipants' representations of another person's intentions as well as their
own. We also examine some of the different ways in which intentions
may be defined, and examine how these may relate to fMRI decoding
results. In other words, we aim to explore the following question: when
intentions are decoded from fMRI activity, what exactly is it that is being
decoded?
Types of intentions

Intentions are conscious mental states that bear some relation to
subsequent action (Bratman, 1987; Mele, 1992; Pacherie, 2008; Pacherie
and Haggard, 2010; Searle, 1983). They may be subdivided according to
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various factors such as their temporal proximity to action. For example,
philosophers have distinguished prior intentions versus
intentions-in-action (Searle, 1983); future-directed versus
present-directed intentions (Bratman, 1987); prospective versus imme-
diate intentions (Brand, 1984); and distal versus proximal intentions
(Mele, 1992). Pacherie (2008) proposes an “intentional cascade” be-
tween 1) distal intentions, associated with initial deliberation and plan-
ning; 2) proximal intentions, which develop an action plan within a
specific context; and 3) motor intentions, which are involved in motor
guidance and control during the execution of overt movements.

In the psychology literature, memory for intentions has been inves-
tigated in the field of “prospective memory” (PM) research (Brandimonte
et al., 1996; Kliegel et al., 2008). Researchers in this field have also made
various theoretical distinctions. For example some authors distinguish
“vigilance”, where an intention is consciously rehearsed over a brief
period, versus prospective memory “proper”, where the intention must
be brought to mind at the appropriate time (Graf and Uttl, 2001). Others
distinguish the different ways in which intentions can be cued (McDaniel
and Einstein, 2007), such as event-based PM (intending to do something
when a particular cue occurs), time-based PM (intending to do something
at a particular time) and activity-based PM (intending to do something
N 3AR, UK.

mber 2017

mailto:sam.gilbert@ucl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2017.12.090&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2017.12.090
https://doi.org/10.1016/j.neuroimage.2017.12.090
https://doi.org/10.1016/j.neuroimage.2017.12.090


S.J. Gilbert, H. Fung NeuroImage 172 (2018) 278–290
after completing a particular activity). A further distinction within
event-based PM (McDaniel and Einstein, 2000) is between “focal” tasks
(where the individual will already be attending to the cue for intended
action as part of an ongoing activity) versus “nonfocal” tasks (where the
ongoing task does not direct attention towards the cue).

Clearly, the term “intention” has a rich set of meanings and is used in
a variety of different ways. This complicates any attempt to investigate
putative neural correlates. It could be the case that phenomena related to
the concept of intention are so diverse at the level of brain function as to
make this concept unsuitable as a target for neuroscientific investigation
(Uithol et al., 2014). According to this view, searching for the neural
correlates of intention would be like searching for the neural correlates of
“thinking” or “believing”: the concepts have such “wildly disjunctive”
meanings (Fodor, 1974) as to resist interpretation in terms of a limited set
of neural correlates. Alternatively, it may be the case that a core set of
brain systems play a key role across a broad range of situations described
in terms of intention. Deciding between these views will require careful
consideration of how neuroimaging paradigms relate to specific cogni-
tive processes.

Insofar as intentions can be linked to particular brain processes, a
further question is the extent to which these processes are intention-
specific or domain-general. On one hand, intentions might be seen as
special type of mental state, with distinct neural correlates. For example,
some artificial intelligence-inspired models of the cognitive system such
as SOAR (Laird, 2012; Newell, 1990) and ACT-R (Anderson, 1996;
Anderson et al., 2004) posit a system called the “goal stack” that plays a
unique cognitive role. According to these models, the goal stack is
structurally distinct from other systems (i.e. it has unique computational
properties). Such models might predict a unique pattern of brain activity
associated with intentions. On the other hand, other models (Altmann
and Trafton, 2002) analyse the concept of intention wholly in terms of
domain-general processes such as memory, priming, and so on. Models of
this type would not predict intention-specific patterns of brain activity
that could not be observed in the context of domain-general cognitive
processes.

Neuroimaging and intention decoding

Initial PET studies investigating neural correlates of intentions
focused on comparing brain activity between situations where par-
ticipants held pending intentions while performing an additional
“ongoing” task versus situations where they simply performed the
ongoing task by itself. These studies revealed brain regions showing
increased (Burgess et al., 2001; Okuda et al., 1998) and decreased
(Burgess et al., 2003) activity associated with remembering delayed
intentions. Methodologically, several of these studies used an
approach of “multiple task averaging”, where two or more tasks were
investigated in order to detect patterns of intention-related signal
change that were relatively invariant to the precise cognitive opera-
tions required by specific tasks (Burgess et al., 2003, 2001; Gilbert
et al., 2009; Simons et al., 2006). Despite wide variety in the in-
tentions and tasks used in these studies, results from these paradigms
revealed surprisingly consistent patterns of signal change, particularly
in regions of rostral prefrontal cortex (reviewed by Burgess et al.,
2011; Cona et al., 2015). Subsequent studies characterised these ef-
fects in further detail, for example extending results from event-based
to time-based paradigms (Oksanen et al., 2014; Okuda et al., 2007),
investigating subtypes of event-based tasks (Gilbert et al., 2009; Si-
mons et al., 2006), distinguishing activity related to encoding, storage,
and retrieval of intentions (Gilbert et al., 2012) and examining
whether the roles of regions showing activation increases versus de-
creases could be distinguished (Landsiedel and Gilbert, 2015).

More recently, studies have begun to use neuroimaging to investigate
the content of intentions. That is, rather than seeking to identify differ-
ences in brain activity between having any intention versus no intention,
these studies have attempted to identify differences in brain activity
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between two specific intentions (Gilbert, 2011; Haynes et al., 2007;
Momennejad and Haynes, 2012, 2013; Soon et al., 2013, 2008; Wis-
niewski et al., 2016). This represents an inversion of the multiple task
averaging logic of earlier studies. Whereas multiple task averaging was
used in an attempt to identify brain activity that is relatively invariant
from one intention to another, recent studies have complemented this by
seeking to detect intention-specific patterns of brain activity. These
studies have typically used multivariate decoding approaches (Haynes
and Rees, 2006; Norman et al., 2006), whereby pattern classifiers are
trained on examples of activity associated with two categories of trial
(e.g. two different intentions), and their ability to correctly classify novel
data is tested.

For example, Haynes et al. (2007) decoded participants' prospective
intentions to add or subtract a pair of to-be-presented numbers, by ana-
lysing patterns of activity in medial prefrontal cortex. Subsequent studies
showed that it was possible to decode participants' free choices to make
one of two motor responses (Soon et al., 2008) or perform one of two
abstract tasks (Soon et al., 2013), up to 10 s before they executed those
responses. Gilbert (2011) decoded participants' intentions to make a
special response if they saw a particular stimulus in the future, with
distinct brain regions containing patterns that predicted A) the type of
stimulus participants were expecting, and B) the specific response they
were preparing to make when they saw it. Momennejad and Haynes
(2012, 2013) decoded participants’ intentions to execute high/low or
odd/even discriminations once they encountered
subsequently-presented digits, with significant effects observed in
various medial and lateral prefrontal regions.

Components of intentions

The studies reviewed above indicate that different intentions can be
associated with specific patterns of brain activity, allowing them to be
decoded using pattern classification techniques. But what exactly do
these different patterns of brain activity reflect? There are various di-
mensions along which intentions can vary, potentially in an orthogonal
manner, making it unclear what exactly the classifiers are detecting. For
example, consider a hypothetical pattern classifier that can decode
whether a person intends to warm or cool a room, using a thermostat.
Below we consider some of the dimensions that the classifier might be
sensitive to.

A. Goals or outcomes. An obvious way in which two intentions can
differ from one another is in the goals or outcomes they aim towards. Our
classifier might be distinguishing representations of a desired goal of
warmth or coolness.

B. Action-plans. A second dimension on which intentions can differ is
in the action or task one intends to perform in order to achieve a goal.
Suppose that the thermostat is operated digitally with a left or right
button to cool or warm the room, respectively. In this case, a person who
intends to cool the room may also intend to press the left button. If the
button mappings were reversed, an intention to cool the room may also
be an intention to press the right button. Therefore, intended goals and
intended action-plans can vary independently of one another. This
distinction between goals and action plans has been recognised in the
distinction made between “goal intentions”, which specify an intended
outcome, and “implementation intentions”, which specify a means of
bringing that outcome about (Gilbert et al., 2009; Gollwitzer, 1999).
Similarly, discussions of the brain's so-called mirror system have noted
that “there must be a clear distinction between goals and the motor
routines that are implemented in a given circumstance to achieve those
goals” (Hickok, 2008, p. 1241).

The distinction between goals and action-plans may be interpreted in
terms of a multi-level hierarchy (e.g. Cooper and Shallice, 2000),
whereby a higher-level goal (e.g. to fill a glass with water) is decomposed
in terms of progressively more specific subgoals and subplans (e.g. to turn
the tap, by executing a particular type of reaching movement with the
arm, adopting a particular kind of grip with the hand, etc.), eventually
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leading to specific patterns of muscle activity. As noted by Tomasello
et al. (2005), a goal such as to fill a glass with water can itself be seen as
an action-plan to satisfy a higher-level goal (e.g. to quench thirst). Thus,
“what is a goal when viewed from beneath is a means when viewed from
above” (p. 677). Accordingly, the distinction between goals and
action-plans does not necessarily identify two dichotomous kinds of
representation. Rather, describing intentions in terms of distinct goals
and action-plans can highlight multiple hierarchically-organised repre-
sentations that play a role in the control of action.

C. Reasons. A third dimension on which intentions can differ is the
reason for forming that intention to begin with. Intentions can be seen as
“the primary link between reasons and actions” (Mele, 1992, p.3). Thus, a
currently hot room may motivate an individual to form an intention to
cool it down, but a currently cool room may motivate the opposite
intention. Our hypothetical classifier might be sensitive to current room
temperature or the reasoning involved in comparing the current tem-
perature to the desired temperature in order to infer whether the
appropriate action would be to warm or cool the room.

D. Expectations. Another possibility is that our classifier is decoding an
expectation that the room will warm up or cool down, rather than the
intention to bring this about. Expectations and intentions are intimately
related. Indeed, in formal models of “active inference” the distinction
between intending an outcome and expecting it to occur can collapse
(Friston et al., 2011; Kilner et al., 2007). Nevertheless, intention and
expectation have distinct meanings in ordinary language. For example,
someone might intend to execute a tricky basketball shot without
expecting that they are likely to be successful (Mele, 1992). Conversely, it
is possible to expect an outcome without intending it to occur. For
example, someone who failed to prepare for a test might expect to fail it
without intending to.

The expectations associated with intentions could relate to outcomes
(in which case they may overlap with goals), or the expected actions by
which those goals might be achieved (in which case they would overlap
with action-plans). They might also relate to other features associated
with goals and action-plans such as the expected level of effort associated
with an intended action. For example, in the Haynes et al. (2007) study
addition may have been less effortful than subtraction, and therefore the
classifier may have decoded an expected level of cognitive control that
would subsequently be required, rather than any specific representation
of arithmetical operations. Another possibility would be that expecta-
tions represent the rewards that can be obtained if an intention is fulfilled
(see Wisniewski et al., 2015 for discussion).

E. Commitment. One crucial difference between intending an outcome
and merely expecting it to occur is that in the former case, but not the
latter, the agent has a disposition to act in order to bring it about. Thus,
along with their representational aspects (goals and action-plans), in-
tentions also have a motivational aspect (Brand, 1984). Without this
motivational aspect, one may have a “predictive awareness” (Mele,
2009) that something is about to occur (e.g. a sneeze) without intention.
In the example of our hypothetical pattern classifier, it is unclear whether
it is sensitive to a prediction that a particular outcome will occur, a
commitment to that outcome, or both. One way to address this issue is to
investigate whether a pattern classifier trained to distinguish two
particular intentions also makes correct predictions when tested on states
of the world associated with those intentions (e.g. stimuli associated with
expected perceptual outcomes) in the absence of any intention to bring
those states about. Insofar as such a cross-classification is possible, this
implies that the classifier is sensitive to the predictive aspect of
intentions.

Aims of the present study

The foregoing discussion demonstrates that if a pattern classifier can
distinguish between a person intending X versus Y, it is not always
certain exactly what it is distinguishing. Perhaps the classifier is sensitive
to brain representations of the goals attached to the two intentions, or
280
their associated action-plans. It may be sensitive to an expectation of the
intentions’ perceptual consequences, the required level of cognitive
control, or the state of the world that rationally justifies forming one or
the other intention to begin with. Perhaps it is sensitive to two or more of
these factors. One aim of the present study is to apply an intention
decoding methodology to a paradigm that allows us to disentangle some
of these possibilities, by orthogonally manipulating distinct intention
components (e.g. goals versus action-plans) and training separate pattern
classifiers to decode these components.

A second aim of this study is to investigate not only whether we
can decode the intentions of the scanned participant, but also their
representation of another person's intention. A large body of research
has identified brain regions involved in thinking about the mental
states of other people, particularly those associated with the brain's
“mentalizing system” (Frith and Frith, 2012; Kennedy and Adolphs,
2012). For example, many studies show increased activation of regions
such as medial prefrontal cortex and temporo-parietal junction when
participants think about the goals and intentions of other people (Van
Overwalle and Baetens, 2009). These studies might be considered
analogous to univariate investigations of first-person intentions which
compare performance of an ongoing task by itself with performance of
the same task while also remembering a delayed intention (e.g.
Burgess et al., 2001, 2003). In other words, they compare thinking
about someone's intention versus not thinking about their intention.
Here, we seek to extend this by searching for patterns of brain activity
that distinguish thinking that an agent has intention X versus thinking
that they have intention Y. To our knowledge, this type of ‘meta--
decoding’ has not previously been attempted, i.e. decoding the scan-
ned participant's mental decoding of another agent's intention.

As well as training separate classifiers to decode the scanned-partic-
ipant's own intention and their representation of another agent's inten-
tion, we also investigated whether we could “cross-classify” between the
two. That is, we investigated whether a classifier trained to decode the
scanned participant's intention could also perform successfully when
tested on the other agent's intention, and vice versa. This would imply
some overlap between representation of our own mental states and those
of other agents, as suggested by “simulation” theories of mindreading.
These theories posit that we understand the mental states of other agents
– at least in part – by simulating those mental states within our own
cognitive systems (Apperly, 2008; Carruthers and Smith, 1996; Gordon,
1986; Heal, 1986; Ramnani and Miall, 2004).

Finally, as discussed above, as well as investigating cross-
classification between 1st-person and 3rd-person intentions, we also
investigated cross-classification between intentions and states of the
world associated with those intentions. Insofar as classifiers trained to
decode intentions could also decode these non-intended outcomes, this
would suggest that the classifiers are sensitive to information that is not
specific to intentions but could also apply to expectations for what is
about to occur, simulation of their perceptual consequences, and so on.
To our knowledge, this is the first study to compare brain activity asso-
ciated with intending an outcome versus merely expecting it.

We scanned participants using fMRI as they performed a task along-
side another agent, orthogonally manipulating the scanned-participant's
own intention and the intention of the other agent. In one condition,
participants believed that the other agent was another person they had
met prior to the scanning session, in another they believed that the other
agent was a computer. This allowed us to investigate whether putative
brain representations of another agent's intention are specific to thinking
about people, or also apply to thinking about other types of agent. Some
previous studies indicate patterns of brain activation, particularly
involving medial prefrontal cortex, that apply selectively when partici-
pants believe they are interacting with a person rather than a computer
(Gallagher et al., 2002; Gilbert et al., 2007). However other studies,
particularly those investigating the mirror system, show no difference
between interacting with a person versus a robot (Cross et al., 2012;
Gazzola et al., 2007).
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Methods

Participants

24 right-handed participants attended an initial behavioural training
session followed by a MRI scanning session 1–4 days later (mean age:
24.4 years; range 19–35; 10 males). A further three participants took part
in the behavioural training setting but were not invited back for MRI
scanning due to poor performance of the behavioural task. All partici-
pants provided written informed consent before taking part and the study
was approved by the UCL Research Ethics Committee (1584/002).

Behavioural task

Participants took part in a collaborative task with a partner. They
were told that they were playing a game together. For half of the trials the
participants were told that their partner was another person outside the
scanner; in the other half they were told that it was a computer program.
There were two roles in this task: the experimenter or computer program
always took the role of player A, who acted first on each trial. The
experimental participant took the role of player B, who acted second on
each trial. A schematic representation of this task is shown in Fig. 1 and
the sequence of events on each trial is shown in Fig. 2.

Each trial began with the players viewing a picture of two vertical
pipes, side by side, with a ball above one of them. Initially, two sections
of the pipes were missing. Subsequently, the ball began to fall down-
wards and the players' task was to fill in the missing sections of the pipes
to guide it towards goal locations (left or right). During this trajectory
there were three “switch points” where the ball could either switch from
one pipe to the other (in which case the pipes could be seen crossing
over) or stay in the same pipe (in which case the pipes continued straight
down). Player A's task was to configure the first switch point (i.e. switch
versus stay) and player B's task was to configure the third switch point.
The second switch point was already shown in a switch or stay config-
uration from the beginning of the trial and was not under control of either
player.

Before the pipes were filled in, the first switch point was filled with
either the name ‘Hoki’ (when player A was the experimenter) or ‘Com-
puter’ (when player A was the computer program). The third switch
point was filled with the participant's first name. The colour of these
names indicated goal locations for the two players (left versus right).
Fig. 1. Schematic illustration of
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These locations determined each player's goal immediately after the
switch point that they controlled. Therefore, player A's goal referred the
ball's location immediately after the first switch point and player B's goal
referred to the location immediately after the third switch point. The
players' names could be shown in four possible colours: red, green, blue,
or orange. Two of these colours indicated left and two indicated right, so
that there were two pairs of colours which indicated left versus right. One
pair of colours was used on odd-numbered trials and the other was used
on even-numbered trials. By cueing each position with two different
colours, we were able to decode fMRI patterns corresponding to each
position unconfounded with the presentation of particular colours (see
below).

Each trial began with an initial period of ‘thinking time’, where the
players could form intentions for future behaviour (i.e. their decisions to
set their respective switch points to switch or stay configurations). It is
only this period of the trial that will be examined in our neuroimaging
analyses. Suppose that a trial begins as follows: 1) ball above the left pipe;
2) player A's name in a colour indicating the right pipe as a goal, 3) the
second switch point set to a switch configuration, 4) player B's name in a
colour indicating the left pipe as a goal. The full crossing of these four
factors defined the 16 possible trial types in this task (see Table 1 for a
list). From the starting point described above, it is possible to reason as
follows: given that the ball's starting point is on the left but player A's goal
is on the right, player A should form an intention to set the first switch
point to a switch configuration. Following this, the ball will pass through
the second switch point, which is also set to a switch configuration, so it
will transfer the ball back to the left pipe. Therefore, given that player B's
goal is for the ball to be on the left, this player should form an intention to
set the third switch point to a stay configuration. In this way, player B
forms the appropriate stay intention, and in doing so s/he considered six
pieces of information: 1) player A's goal (right); 2) player A's action-plan
(switch); 3) player B's goal (left); 4) player B's action-plan (stay); 5) the
ball's initial position (left); 6) configuration of the second switch point
(switch).

Importantly, in our experimental design these six variables are
perfectly orthogonal to each other across the 16 trial types. This allowed
us to investigate patterns of brain activity that were sensitive to each of
these six variables in turn, without being confounded with any of the
other variables. Although the two action-plans could be deduced by
thinking about the four other pieces of information (as described in the
example above), the correlation between each action-plan and the other
stimuli for behavioural task.



Fig. 2. Sequence of events on one trial of the behavioural task. Colour-goal reminders were shown at the beginning of each block of 32 trials, then the subsequent
five stages occurred on every trial. Only the initial thinking time, shown here with thicker border, was used for fMRI analyses.
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five variables, across the 16 trial types, was zero (Table 2). Formally,
predicting the action-plans from the other factors is a linearly inseparable
problem (Duda et al., 2000). This means that a linear classifier such as the
one used in the present study would by definition be unable perform
better than chance in predicting action-plans from the other variables.

Following the thinking time at the beginning of each trial two images
were shown to the left and right of the first switch point, one showing
pipes in a switch configuration and the other showing pipes in a stay
configuration. This was the cue for player A to press the left or right
Table 1
Possible trial types. 0¼ left (columns 2–4) or switch (columns 5–7). 1¼ right (columns
2–4) or stay (columns 5–7).

Trial
type

Initial
ball
position

Player
A's goal

Player
B's goal

Second switch
configuration

Player
A's
action-
plan

Player
B's
action-
plan

1 0 0 0 0 1 0
2 0 0 1 0 1 1
3 0 1 0 0 0 1
4 0 1 1 0 0 0
5 0 0 0 1 1 1
6 0 0 1 1 1 0
7 0 1 0 1 0 0
8 0 1 1 1 0 1
9 1 0 0 0 0 0
10 1 0 1 0 0 1
11 1 1 0 0 1 1
12 1 1 1 0 1 0
13 1 0 0 1 0 1
14 1 0 1 1 0 0
15 1 1 0 1 1 0
16 1 1 1 1 1 1
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button to configure the first switch point. As soon as this occurred, the
ball began falling continuously down the pipes and player B was pre-
sented with switch and stay options either side of the third switch point.
Player B then configured the third switch point in anticipation of the
arrival of the ball. Finally when the ball reached the bottom of the pipes,
feedback was provided in the form of a flashing dot shown under player
B's goal location. If player B's switch point was configured correctly, this
was shown in green; otherwise a black outline was shown. Whenever
switch/stay options were presented on the screen they were randomly
assigned to left versus right. This meant that during the initial thinking
period the player could only form an abstract intention to switch or stay
rather than a specific motor response to press the left or right button.
Behavioural procedure

Participants took part in an initial behavioural training session to
learn the task. First they practiced the task without player A, with the first
two switch points already set to the stay configuration from the beginning
of each trial. During this part of the practice session they saw the words
‘LEFT’ and ‘RIGHT’ presented in their associated colours on the left and
right of the screen so that they could learn these colour-position map-
pings. Following this, they performed the task without these reminders
being presented on the screen until they reached a criterion of at least
75% correct. Next, they practiced the task with the experimenter (Hoki)
also taking part as player A, controlling the first switch point. The second
switch point was still always set to stay. During this part of the task the
experimenter sat beside the participant and pressed keys on the keyboard
to configure the first switch point, so that the participant would see that
player A was a real person taking part in the task. Next, they practised the
task with the second switch point set to a switch configuration, followed



Table 2
Correlation matrix between the factors shown in Table 1, across the 16 trial types.

Initial ball position Player A's goal Player B's goal Second switch configuration Player A's action-plan Player B's action-plan

Initial ball position 1 0 0 0 0 0
Player A's goal 0 1 0 0 0 0
Player B's goal 0 0 1 0 0 0
Second switch configuration 0 0 0 1 0 0
Player A's action-plan 0 0 0 0 1 0
Player B's action-plan 0 0 0 0 0 1
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by practice trials with the second switch point randomly set to switch or
stay configurations. After this, a new element of the task was introduced.
Participants performed 16 practice trials, and on two of these trials Hoki
configured the first switch point incorrectly (i.e. catch trials). As a result
player B had to reverse their intended configuration of the third switch
point to guide the ball to their goal location. The purpose of this was to
provide a measure of whether participants were generating an expecta-
tion for player A's behaviour in each trial's initial thinking period. If so, an
incorrect choice from player A would be surprising, as a result of which
player B would be required to rapidly change their action-plan, which
could be detected behaviourally by increased response time and/or error
rate. Alternatively, if player B simply reacted to the position of the ball
after player A configured the first switch point, there would be no reason
to expect them to behave differently between catch and noncatch trials.
At the end of this practice session, participants were presented with the
question ‘Did Hoki sometimes surprise you with her choice?’, which they
answered by pressing a button corresponding to the words ‘No’ and ‘Yes’
presented on the left and right of the screen. This was included as a means
of encouraging participants to form expectations for player A's behaviour
throughout the task. Finally, in the last practice session, participants
performed 16 trials where player A was Hoki, followed by the question
‘Did Hoki sometimes surprise you with her choice?’, then 16 trials were
player A was Computer, followed by the question ‘Did the Computer
sometimes surprise you with its choice?’. This matched the task that
would subsequently be performed in the fMRI scanning session. In order
to make clear the distinction between ‘Hoki’ and ‘Computer’ trials,
whereas Hoki was engaged in the task and pressed keys on the computer
while she was player A, when the Computer was player A the switch
point was configured without requiring any key press and Hoki looked
away from the laptop and read a magazine to make it clear that she was
no longer involved in the task.

During the scanning session, there were six runs, each consisting of 32
trials as described above, with the exception that unbeknownst to the
participant, the computer was now always in control of player A so that
Hoki/Compuer conditions were perfectly matched. The order of Hoki/
Computer for player A in the first run was counterbalanced between
participants, and subsequently reversed from each run to the next. Each
set of 16 trials consisted of the full set of possible trial types, presented in
random order. The two colour-pairs used to cue goal locations alternated
from each trial to the next. On two randomly-selected runs there were no
catch trials; two runs each contained two catch trials out of the 16 where
player A was Hoki, and two runs each contained two catch trials out of
the 16 where player A was the Computer. Following the MRI scan, par-
ticipants were asked to fill out a questionnaire giving their impressions of
the task (see below).

The timings on each trial were as follows. The initial thinking time
(the focus of the neuroimaging analyses) followed an approximately
exponential distribution (min: 3s, max: 18.5s, mean: 8s). By jittering the
duration in this manner we were able to decorrelate the haemodynamic
response to this period of the trial from subsequent parts (Visscher et al.,
2003). Following this, player A's response options were presented on the
screen. Player A responded 0.5–1.1 s later (mean: 0.7). These timings
were matched between the Hoki and Computer conditions, and were
similar to the timings produced by Hoki in the practice session. At this
point the ball began falling down the screen and player B's response
options were presented. As soon as player B responded, the third switch
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point was filled in accordingly. If player B had not responded by the time
the ball reached the position of the third switch point (which took 2 s),
the switch point was set to the incorrect configuration. Once the ball
reached the third switch point, i.e. the final moment at which it was
possible for player B to make a choice, it then sped up and took 0.4s to
reach the bottom of the screen, followed by a 1s feedback period, then a
0.5 pause until the next trial. Therefore mean total trial duration was
12.6s. Each run consisted of two miniblocks of 16 trials, with each
miniblock followed by a 6 s period where participants were asked if they
were surprised by player A's behaviour. The two miniblocks were iden-
tical except that the agency for player A switched between Hoki and
Computer.

fMRI procedure

A 1.5T Siemens TIM Avanto scanner was used to acquire both T1-
weighted structural images and T2*-weighted echoplanar images
(64 � 64; 3.2 � 3.2 mm pixels; echo time: 40 ms) with blood oxygen
level-dependent (BOLD) contrast. Each volume comprised 40 axial slices
(3.2 mm thick, oriented approximately to the anterior commissure-
posterior commissure plane). Functional scans were acquired in six ses-
sions, each comprising 428 vol (~7 min). Volumes were acquired
continuously using a multi-band sequence (acceleration factor: 4), with
an effective repetition time of 1s per volume. The first nine volumes in
each session were discarded to allow for T1 equilibration effects. Be-
tween the third and fourth functional scan, a 6 min T1-weighted struc-
tural scan was performed.

Data analysis

Multi-voxel pattern analyses were conducted as follows. Separate
analyses were conducted to decode each of the following pieces of in-
formation: player A's goal (left/right), player A's action-plan (switch/
stay), player B's goal (left/right), player B's action-plan (switch/stay).
Seeing as player B was the scanned participant, this means that we were
decoding either player B's representation of player A's goal/action-plan,
or player B's representation of their own goal/action-plan. We did this
by partitioning the 16 possible trial types into two sets of 8, depending on
the piece of information we were decoding, and training a classifier to
distinguish the two categories. For example, suppose that we were
decoding player B's representation of player A's goal. In this case, we
would train a classifier to distinguish trial types 1,2,5,6,9,10,13,14
versus 3,4,7,8,11,12,15,16 (see Table 1). Note that these categories differ
only in player A's goal and are perfectly balanced in terms of the initial
ball position, player B's goal, the second switch configuration, player A's
action plan, and player B's action plan. Therefore player A's goal could be
examined, unconfounded with the other pieces of information. Next, to
decode player B's representation of their own goal, we would classify trial
types 1,3,5,7,9,11,13,15 versus 2,4,6,8,10,12,14,16. Again, the two
categories classified here are perfectly balanced in terms of each of the
other pieces of information. This procedure was therefore repeated to
decode each possible type of information, separately for the human-
partner and computer-partner conditions.

fMRI data were analysed using SPM12 software running on MATLAB
R2016b for Mac, along with custom-written MATLAB code. First-level
models were set up to analyse fMRI data after realignment with SPM12



Fig. 3. Behavioural results. Error-bars indicate 95% confidence intervals for the within-subject contrast between catch/non-catch trials (Loftus and Masson,
1994), such that nonoverlapping bars indicate a significant difference. Grey lines indicate data from individual participants. This shows a highly consistent pattern
in the response time data. The pattern is less consistent for the accuracy data, likely because there are only four catch trials in each condition, hence the only
possible values for catch-trial accuracy are 0, 0.25, 0.5, 0.75, and 1, whereas the non-catch trial accuracies can take a larger range of values.
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but prior to normalisation or smoothing. For each MVPA analysis, the
thinking period at the beginning of each trial was modelled with eight
separate boxcar regressors: four representing one of the categories being
decoded (e.g. player A's goal: left), the other four representing the other
category (e.g. player A's goal: right). The four regressors for each
decoding category resulted from the crossing of two possible agents
(Hoki/Computer) and two possible pairs of colours used to represent left
vs right goals. Additional regressors coded for 1) Hoki's non-catch
response; 2) Hoki's catch response; 3) Computer's non-catch response;
4) Computer's catch response; 5) The participant's own response; 6)
Feedback following correct responses; 7) Feedback following incorrect
responses; 8) Post-miniblock question about whether there had been any
surprising responses. These were modelled with delta functions, apart
from the feedback regressors (modelled with a duration of 1s) and the
post-miniblock regressor (modelled with a duration equivalent to the
participant's response time). Additional regressors coded for the six
movement parameters derived from realignment and the mean over
scans. This comprised the full model for each session.

Parameter estimates from first-level models were used for MVPA
analyses. These analyses used a searchlight approach (Kriegeskorte et al.,
2006): we investigated decoding accuracy from a sphere of voxels
centered on each voxel in the brain in turn (radius: three voxels). Each
sphere yielded a vector of voxelwise parameter estimates representing
one of the two conditions being distinguished (e.g. player A's goal left vs
player A's goal right), in one of the six sessions. These vectors were
individually normalised to mean 0, SD 1 before being entered into MVPA
analysis, and the resulting decoding accuracy was assigned to the central
voxel after subtracting 50%, yielding a whole-brain decoding map where
zero indicated chance performance. Separate analyses were conducted
for the human-partner and computer-partner conditions. For each con-
dition, linear support vector machines were trained to distinguish pat-
terns corresponding to the two categories (LIBSVM implementation;
http://www.csie.ntu.edu.tw/~cjlin/libsvm; regularization parameter:
1). A leave-one-out crossvalidation approach was used so that classifiers
were trained on five sessions and tested on the sixth, rotating train-
ing/testing sets over the six sessions. Furthermore, classifiers were al-
ways trained on data from one colour-goal mapping and tested on the
other (averaging results after flipping the two mappings). This ensured
that classification could not be based on the colours used to cue the two
goals.

To evaluate decoding accuracy at the group level, decoding maps
were normalized into 3mm cubic voxels using Montreal Neurological
1 For one participant no structural scan was available and the normalisation parameters
were based on the mean functional scan.
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Institute reference space and fourth-degree B-spline interpolation, based
on normalisation parameters derived from segmenting the coregistered
structural scan.1 The normalised maps were then smoothed using a 4mm
Gaussian kernel (as in Gilbert, 2011) and entered into a one-sample t-test
at the second level. This allows evaluation of regions showing consis-
tently above-chance decoding accuracy across participants. Results were
considered significant if they passed a familywise error corrected extent
threshold of p< .05, based on a cluster forming threshold of p< .001.
This follows the statistical approach and threshold used in other recent
MVPA studies (e.g. Loose et al., 2017), avoiding the inflated false positive
rates seen at more liberal statistical thresholds by Eklund et al. (2016).

Results

Questionnaire measures

No participant spontaneously guessed that the human-partner and
computer-partner conditions were in fact identical. All participants said
that they were at least somewhat surprised to discover that the experi-
menter was no longer involved in the task once the scanning session
began. However, participants reported that they approached the task
similarly in the two conditions, with only one participant out of 24
reporting any difference in behaviour between the two (this participant
said that they tried harder to perform well in the human-partner condi-
tion). For full results from the questionnaire, see Supplementary
Materials.

Behavioural results

Behavioural results are summarised in Fig. 3. Participants generally
performed accurately; however, accuracy was reduced and reaction time
increased on catch trials, where player A configured the first switch point
unexpectedly. This indicates that participants formed prior expectations
during the initial thinking period on each trial. If they had simply reacted
to player A's configuration of the first switch point there would be no
reason to expect any difference between the two types of trial. Accuracy
data was entered into a repeated measures ANOVA with factors Catch
(catch vs non-catch) and Partner (human vs computer). This showed a
significant effect of Catch (F(1,23)¼ 21, p< .001, η2p¼ .48) but no sig-
nificant effect of Partner or Catch x Partner interaction (F(1,23) < 2.6, p
> .12, η2p< .11). A similar analysis of the reaction time data showed a
significant effect of Catch (F(1, 23)¼ 86, p< .001, η2p¼ .79), but no
significant effect of Partner or Catch x Partner interaction (F(1,23)< 2.7,
p > .11, η2p< .11). Accuracy for participants' report at the end of each
block whether there had been any catch trials was 78%, which was
significantly above chance (t(23)¼ 7.2, p< .001). Note that answering

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm


Table 3
Regions of significant intention decoding. BA¼ approximate Brodmann Area. Decoding
accuracies represent the mean of all searchlights with central voxels within each region.
Furthermore, they represent the mean of eight separate decoding analyses, therefore a
region with a decoding accuracy of 58% in one analysis and 50% in the remaining seven
would have a mean decoding accuracy of 51%.

Region BA Peak co-
ordinate

Zmax N
voxels

Decoding
accuracy

Dorsal posterior
frontal cortex

6/8 �36, �4, 47 3.81 61 51.4%

Superior parietal
cortex

7 �21, �52,
56

5.07 290 51.4%

Posterior cingulate 23/
30

�9, �58, 17 4.38 78 51.2%

Occipital cortex 18 �21, �88, 8 4.38 60 51.3%
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this question correctly requires the catch/non-catch status of all 16 trials
to be accurately evaluated, therefore this represents a much higher level
individual-trial accuracy than 78%.

Decoding intentions of self and other

Eight separate decoding analyses were conducted as a result of
crossing the following three factors: A. own intention or other intention
(below we refer to this as 1st-person and 3rd-person respectively); B. goal
(left-right) or action-plan (switch-stay); C. human-partner or computer-
partner. Therefore, the eight analyses attempted to decode the
following: 1) 1st-person goal, human-partner; 2) 1st-person goal,
computer-partner; 3) 1st-person action-plan, human-partner; 4) 1st-per-
son action-plan, computer-partner; 5) 3rd-person goal, human-partner; 6)
3rd-person goal, computer-partner; 7) 3rd-person action-plan, human-
partner; 8) 3rd-person action-plan, computer-partner. Rather than report
each of these analyses here (with the attendant multiple comparisons
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problem this would cause), we first averaged them and entered the mean
decoding map into a one-sample t-test (for results from each of the in-
dividual decoding analyses, see Supplementary Materials). This provides
a single test potentially sensitive to any type of information, from which
it is possible to generate regions of interest which are unbiased with
respect to the three factors described above. We then consider the evi-
dence for significant decoding of each specific type of information below.

The mean decoding map identified four regions at a whole-brain
corrected threshold showing significant effects, all in the left hemi-
sphere (Table 3, Fig. 4): dorsal posterior frontal cortex (BA 6/8), superior
parietal cortex (BA 7), posterior cingulate (BA 23/30) and occipital
cortex (BA 18). Mean decoding accuracies were extracted across all
voxels in each of these regions of interest (ROIs) and entered into a
repeated measures ANOVA with factors Region, Perspective (1st person/
3rd person), Component (goal/action-plan) and Partner (human/com-
puter). Note that these ROIs are biased towards above-chance decoding
accuracy seeing as this was the statistical criterion by which they were
selected (based on a familywise error correction for multiple compari-
sons). Therefore in the analyses below we only report significance tests
for effects which are orthogonal to this selection criterion (Kriegeskorte
et al., 2009). There was a main effect of Component (F(1,23)¼ 7.1,
p¼ .014, η2p¼ .235), qualified by a Component x Region interaction
(F(3,69)¼ 7.3, p¼ .0003, η2p¼ .240). There were no other significant
effects (p> .079, η2p< .094).

These results are illustrated in Fig. 5. Overall, accuracies for decoding
action-plans (i.e. switch versus stay) were higher than accuracies for
goals (left versus right). However, these results were modulated by re-
gion. Numerically, decoding accuracy for action-plans increased in the
following sequence: 1) occipital cortex, 2) posterior cingulate, 3) superior
parietal cortex and 4) frontal cortex. Decoding accuracy for goals
increased in exactly the reverse sequence. Thus, when considering each
intention component separately, there was a main effect of Region for
Fig. 4. Regions of consistently above-chance intention
decoding. Panels A–C display results on sagittal (x¼�10),
coronal (y¼�50), and axial (z¼ 52) slices respectively of the
mean normalised structural scan. Decoding was possible from
four regions: occipital cortex (panel A), posterior cingulate
(panel B), superior parietal cortex (panels A–C) and dorsal
prefrontal cortex (panels A and C). Panel D shows a 3D
rendering of results derived from MRIcroGL software.



Fig. 5. Accuracy of intention decoding analyses in four regions shown in Fig. 4. Horizontal red line indicates chance accuracy. 1st-person decoding refers to
classification of the scanned participant's intention. 3rd-person decoding refers to classification of their representation of the partner's intention. Error bars indicate
95% confidence intervals for the comparison of each bar with chance performance. Note that the regions of interest were selected on the basis of showing above-
chance decoding accuracy in these analyses, therefore we refrain from significance-testing of individual bars seeing as results could be inflated by selection bias.
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both action-plans (F(3,69)¼ 4.54, p¼ .006, η2p¼ .165) and goals
(F(3,69)¼ 4.41, p¼ .007, η2p¼ .161). This indicates that the decoding
map shown in Fig. 4 reflects significant contributions from both goal
decoding and action-plan decoding. If mean decoding accuracy had been
driven by above-chance levels for just one intention component, there
would be no reason for the other component to differ significantly be-
tween regions.

Cross-classification between 1st and 3rd person perspectives

Next we investigated whether it was possible to crossclassify between
the intentions of the scanned-participant and their partner. To do this, we
trained classifiers on categories based on one classification (e.g. own
intention switch versus stay) and tested them on categories based on
another (e.g. partner's intention switch versus stay). These analyses were
performed using a searchlight approach across the whole brain, with
classifiers trained on one colour-goal mapping and tested on the other, as
in the decoding analyses above. For all analyses, we averaged over
classification direction (i.e. train on partner A, test on partner B/train on
partner B, test on partner A). Note that classifications for the two partners
were strictly orthogonal, by design. This means that a classifier that was
100% accurate for decoding one partner's intention would necessarily be
at chance level for the other partner. Nevertheless, it is still possible for a
single classifier to decode both partners' intentions with above chance
accuracy. For example, consider a classifier that predicts switch if either
partner has an intention to switch, otherwise stay. This classifier would
correctly classify 75% of trials.

We averaged results from the cross-classification analysis in the four
regions of interest defined by the analysis above. Note that unlike the
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decoding accuracies analysed in section 3.3, the decoding accuracies in
the present analysis are unbiased at our regions of interest because the
trial categorisations for training and testing data were orthogonal to one
another. As a result, the analyses under investigation were independent
of those used to define the regions of interest (Kriegeskorte et al., 2009).
Therefore, we include tests for above-chance decoding accuracies in the
present section, which we refrained to do in section 3.3 because it would
have been biased. Decoding accuracies were analysed in a
repeated-measures ANOVA with factors Region, Component (goal/-
action-plan) and Partner (human/computer), after subtracting 50 so that
zero represented chance performance. The intercept for this ANOVA was
greater than zero (F(1,23)¼ 4.4, p¼ .047, η2p¼ .161), indicating that
significant crossclassification occurred. There were also main effects of
Region (F(3,69)¼ 5.77, p¼ .001, η2p¼ .200) and Component (F(1,
23)¼ 8.95, p¼ .007, η2p¼ .280). Results are shown in Fig. 6, which
shows significant cross-classification of action-plans in frontal and su-
perior parietal cortex (p< .0012). Both of these effects survived a Bon-
ferroni correction for multiple comparisons (corrected alpha¼ 0.006);
none of the other cross-classifications was significant, even without
Bonferroni correction (p> .28).

Cross-classification between mental-state decoding and physical-state
decoding

One of the aims of the present study was to investigate cross-
classification between intention components and states of the world
corresponding to those intentions. Such cross-classification might be
expected if, for example, holding a particular intention was associated
with simulating its perceptual consequences. This would be consistent
Fig. 6. Cross-classification between 1st-person and
3rd-person intentions. Note that these analyses are
unbiased with respect to the analyses used to
generate regions of interest. Error-bars indicate 95%
confidence intervals for the comparison of each bar
against chance performance.



Fig. 7. Cross-classification between visually presented stimulus-characteristics (initial presentation of ball on left vs right/initial configuration of second switch
point as switch vs stay) and inferred intention components (goal: left vs right/action plan: switch vs stay). 1st-person decoding refers to decoding of the scanned
participant's intention; 3rd-person decoding refers to decoding of their representation of their partner's intention. Error bars indicate 95% confidence intervals for
the comparison of each bar against chance performance.
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with prior evidence of overlapping fMRI activation patterns for percep-
tion and imagery (Cichy et al., 2012; Stokes et al., 2009).

In order to investigate cross-classification of this type, we first
collapsed over the human-partner and computer-partner conditions
(which failed to show any significant differences). We also collapsed
across the two colour-goal mappings. It was no longer necessary to keep
these separate because the results of the following analyses could not be
biased by classification of colour cues. We then performed separate cross-
classification analyses for the two intention components and report re-
sults from the four ROIs as above. For goal decoding, we cross-classified
between left versus right goals, and trials that began with an image of the
ball above the left versus right pipe. For plan decoding, we cross-
classified between switch versus stay intentions, and trials that began
with the second switch-point shown in the switch versus stay configu-
ration. Therefore these analyses cross-classified between invisible goals
or plans inferred by the participants, and visible states of the world that
corresponded to these goals or plans. We conducted these analyses
separately for 1st-person and 3rd-person intentions. As with our earlier
analyses, these cross-classifications were unbiased in our experimental
design, e.g. intentions with left versus right goals were equally likely to
occur on trials with the ball starting above the left versus right pipe (see
Tables 1 and 2).

Using the same ROIs as sections 3.3 and 3.4 above, decoding accu-
racies were analysed in a Region x Perspective (1st-person/3rd-person) x
Component (goal/plan) Repeated Measures ANOVA. The intercept for
this ANOVA was greater than zero, indicating that significant cross-
classification was possible (F(1,23)¼ 45.6, p< .001, η2p¼ .67). There
were main effects of Region (F(3,69)¼ 9.58, p< .001, η2p¼ .29) and
Component (F(1,23)¼ 15.1, p< .001, η2p¼ .40), along with interactions
between Region x Component (F(3,69)¼ 12.1, p< .001, η2p¼ .34),
Component x Perspective (F(1,23)¼ 7.69, p¼ .011, η2p¼ .25) and Re-
gion x Component x Perspective (F(3,69)¼ 16.4, p< .001, η2p¼ .42).
These results are illustrated in Fig. 7. Significant cross-classification was
possible for both 1st-person and 3rd-person action-plans in frontal and
superior parietal cortex. In occipital cortex, cross-classification was
possible for 1st-person action-plans and 3rd-person goals. Each of these
effects survived a Bonferroni correction over the 16 tests conducted
(t(23)> 4.2, p< .00031; corrected alpha¼ 0.003). None of the other
cross-classification effects was significant, even at an uncorrected
threshold (t(23) < 1.7, p > .11).
Intention-specific activity patterns?

In a final set of analyses, we tested whether there were any regions for
which the initial intention decoding analyses yielded better decoding
accuracies than the subsequent cross-classification analyses. This might
be expected if there were intention-specific patterns of brain activity that
did not generalise between 1st-person and 3rd-person intentions, or be-
tween intention representations and representations of physical states of
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the world. We also searched for regions in which 3rd-person intention
decoding was significantly different between the human-partner and
computer-partner conditions. None of these planned analyses produced
any significant results. Thus, there was no evidence for intention-specific
patterns of brain activity. We report a further set of exploratory analyses
in Supplementary Materials. While the majority of these analyses pro-
duced nonsignificant results, a small number of significant results were
found. However, we do not consider that these results provide strong
evidence for intention-specific activity patterns unless they can be
replicated, given the high risk of false positives when a large number of
exploratory analyses are conducted.

We also investigated the strength of evidence for a null effect of
Perspective (1st person vs 3rd person) and Partner (human vs computer)
on intention decoding in the regions of interest shown in Table 3. To do
this we repeated the analysis described in section 3.3 above, using a
Bayesian Repeated Measures ANOVA in the statistics package JASP
0.8.3.1 (JASP Team, 2017). Our null model included the factors Region,
Component, and Region x Component, to account for the significant
Region x Component interaction described above. We then calculated
Bayes Factors BF01 for models additionally including factors of Perspec-
tive and Partner, and all interactions with other factors. This provides a
measure of the evidence for a null effect of including these additional
factors. In all cases, models including the Perspective factor and its
interaction with other factors had a BF01 greater than 7.8, and those
including Partner and its interactions had a BF01 greater than 10.9. Bayes
factors greater than 10 are conventionally interpreted as providing
“strong” evidence, while those in 3–10 range are described as “substan-
tial” (Jeffreys, 1961). Thus, the evidence for a null effect of Perspective
and Partner in our regions of interest was in the substantial-to-strong
range.

Discussion

In this study we aimed to extend previous “intention decoding” fMRI
experiments with a paradigm incorporating three novel features: A)
attempting to decode both the scanned-participant's own intention and
their representation of another agent's intention; B) distinguishing goal
versus action-plan components of intentions; C) attempting cross-
classification between intention components and states of the world
corresponding to those components. Results showed that it was possible
to decode both 1st person and 3rd person intentions, with distinct brain
regions showing selectivity for goal versus action-plan components of
those intentions. However, follow-up analyses suggested that the
decoding analyses reflected low-level processes involved in generating
the content of intentions and/or expecting their outcomes, rather than
any intention-specific pattern of brain activity.

The network of brain regions fromwhich intentions could be decoded
included regions of dorsal prefrontal, superior parietal, posterior cingu-
late, and occipital cortices. Similar regions of dorsal prefrontal and
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superior parietal cortex frequently co-activate in functional neuro-
imaging studies (Yeo et al., 2011) and have been proposed to play a key
role in awareness of conscious intentions and motor plans (Cona et al.,
2015; Desmurget et al., 2009; Desmurget and Sirigu, 2009; Haggard,
2005). These regions - termed the ‘dorsal frontoparietal network’ by
some authors (Ptak et al., 2017) - have also been implicated in a range of
visuospatial processes relevant to the present paradigm, such as gener-
ation of saccades (Grosbras et al., 2005), shifts in visual attention (Cor-
betta et al., 1998; de Haan et al., 2008), simulation of spatial
transformations and mental rotation (Zacks, 2008), motor imagery, and
emulation of visuomotor processes (H�etu et al., 2013; Zabicki et al.,
2016).

While the present results are certainly consistent with a prominent
role of dorsal frontoparietal regions in representing intentions, there are
at least at least three possible roles that these regions could have played
that can be described without invoking the concept of intention. First, it
is possible that intentions to switch versus stay were associated with
different patterns of eye movements and that our decoding analyses were
simply detecting saccade-related activity patterns in this network. In the
absence of eye-tracking data from this study, we cannot exclude this
possibility. A second potential role of this network is in performing the
spatial computations required to compare the starting position of the ball
with its goal position, and thereby derive an appropriate intention to
switch versus stay. This would be consistent with its role in other para-
digms involving computation of spatial transformations, such as mental
rotation tasks (Zacks, 2008). Third, this network may have played a role
in emulating intended action-plans and/or simulating the perceptual
consequences of plans to switch versus stay. This would be consistent
with “motor emulation” theories of the role of this network (Ptak et al.,
2017). These three possibilities are not mutually exclusive, and would all
be compatible with the significant cross-classification between intended
action-plans to switch versus stay and the perceptually-presented
configuration of the second switch point in our experimental design.
Each of these possible functions could play an important role in sup-
porting visuomotor intentions. However, none of them can be interpreted
as an intention-specific processes.

The posterior cingulate region identified in our decoding analyses has
also been proposed to play a key role in processing intentions. For
example, Cona et al.’s (2015) meta-analysis showed consistent activation
of posterior cingulate associated with both encoding and retrieving in-
tentions. Gilbert et al. (2012) found that voxelwise patterns of activity in
this region showed greater similarity between encoding and retrieval
when intentions were successfully fulfilled rather than missed (see also
Qiao et al., 2017 for evidence that similar medial parietal regions are
involved in representing intentional task set). This region also plays an
important role in visuospatial tasks such as those involving eye move-
ments (Berman et al., 1999), spatial attention (Hopfinger et al., 2000),
and translation between egocentric and allocentric spatial reference
frames (Vogt et al., 1992).

Turning now to occipital cortex, this region showed the greatest
decoding of goals (left versus right), but no cross-classification between
1st-person and 3rd-person representations. However, occipital cortex did
show significant cross-classification between visual presentation of the
ball on the left versus right of the screen and the 3rd-person goal of
partner A to move the ball to the left versus right pipe. It also showed
cross-classification between visual presentation of the second switch
point in a switch versus stay configuration and player B's action-plan to
switch versus stay. Both of these effects could be explained if this region
held a visual template of the scanned participant's expectation of the
outcome of player A's intended behaviour, along with a visual template of
how the scanned-participant (player B) should then respond. The first of
these pieces of information would be required as an intermediate step in
the inference as to whether the correct plan is to switch or stay. The
second would then provide a template that would allow selection of the
correct response by matching the visual presentation of the two response
options against a representation of the correct one to choose.
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Unlike the majority of previous intention decoding studies (reviewed
by Haynes, 2014; Momennejad and Haynes, 2013), the present study did
not show any evidence of intention decoding from medial prefrontal
cortex, a region thought to play a key role in intentional action (Brass
et al., 2013). There are at least two relevant differences between the
present paradigm and previous ones that may explain this discrepancy
(see also Zhang et al., 2013 for a relevant discussion of rule encoding in
medial prefrontal cortex). First, the intentions contrasted in previous
studies tended to represent abstract task sets (e.g. perform an addition
versus a subtraction task) rather than visuospatial options used here (left
vs right and switch vs stay). Second, in the present study there was no
filler task during the intention planning period: participants simply
focused on thinking about their intention until the response cues
appeared. Previous work suggests that medial prefrontal decoding of
delayed intentions is particularly associated with periods filled with a
distracting task (Momennejad and Haynes, 2013). A possible explanation
of this – at least with respect to the rostral aspects of this brain region -
comes from the ‘gateway hypothesis’ of Burgess and colleagues (Burgess
et al., 2007; Gilbert et al., 2005). This hypothesis suggests remembering
intentions whilst also dealing with a distracting ongoing task may
particularly recruit rostral prefrontal cortex due to a role of this brain
region in attentional selection between stimulus-oriented thought
(prompted by the ongoing task) and maintenance of
stimulus-independent representations of intended behaviour. Accord-
ingly, rostral prefrontal cortex would not be expected to play a role in
task such as the present one, where participants are free to focus on in-
tentions without simultaneously having to deal with a distracting
ongoing task.

Our design included two features that would have allowed us to
distinguish brain activity specifically related to processing of intentions
versus non-specific visuo-spatial processes. First, we were able to
compare patterns of brain activity that distinguished the scanned par-
ticipant's own intention to switch versus stay from their representation of
another agent's intention. Seeing as the visuo-spatial computations
required to generate appropriate 1st-person and 3rd-person intentions
were matched, this would have revealed patterns that could not be
attributed simply to lower-level visuo-spatial processes. Second, when
examining participants' representation of 3rd-person intentions we could
compare their representation of a human partner's intention versus a
computer partner. A brain region from which it was possible to decode
participants' representations of a human partner's intention, but not a
computer partner in a matched task, would be a candidate region for
supporting representations which were specific to the content of other
humans' mental states.

Neither of these comparisons revealed any significant differences in
decoding accuracy. On the basis of this, we argue that the present results
provide no evidence for unique brain representations of intentions as a
special type of mental state, distinct from processes such as generation
and elaboration of visuomotor plans, simulating expected perceptual
outcomes, and so on. Of course, this is not to deny that alternative
experimental paradigms might be more successful, or that alternative
analysis techniques with the present dataset might have detected
intention-specific patterns. To facilitate re-analyses of our data by other
researchers, we have provided the full fMRI dataset for download at the
following location: [https://openfmri.org/dataset/ds000257/]. We
cannot exclude the possibility that our failure to find intention-specific
patterns of activity merely reflects low statistical power. We tested a
total of 24 participants, and 96 trials contributed to each of the decoding
analyses performed (or 192 trials for analyses collapsing over human-
partner and computer-partner conditions). This is comparable to previ-
ous fMRI intention decoding studies, e.g. Momennejad and Haynes
(2012, 2013), who tested 20 and 23 participants respectively, and used
60 and 72 trials respectively for their main decoding analyses. Never-
theless, the problem of low power in neuroscience studies should not be
underestimated (Button et al., 2013) and it is clearly possible that studies
with greater power might detect intention-specific patterns of brain

https://openfmri.org/dataset/ds000257/
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activity.
Our results could have implications on a practical as well as a theo-

retical level. Recent speculation has suggested that intention decoding
neuroimaging methodologies could play a role in legal contexts, for
example decoding criminal intent from a brain scan (see Haynes, 2014
for discussion). We are sceptical of this possibility. This would require
decoding of 1st-person commitment to an intended act, rather than a
representation of someone else's intention, or thinking about a particular
action-plan without any commitment to actually bring it about (e.g. an
expectation that an outcome will occur without motivation to bring it
about). Our results suggest that it could be difficult to distinguish which
of these is being decoded when we “decode intentions”. We also suggest
that previous intention decoding neuroimaging studies have failed to
demonstrate patterns of brain activity that are unequivocally
intention-specific, rather than potentially reflecting other factors such as
expectations for future events regardless of any intention to bring them
about. We propose that a clearer understanding of what intention
decoding analyses are actually decoding can come from paradigms that
distinguish various intention components from each other and compare
decoding of intentions with decoding of expectations. This can help us to
make progress with the following three questions:

1) How selectively are intention components such as goals and action-
plans coded by distributed brain networks?

2) To what extent are patterns of brain activity involved in representing
our own intentions also involved in representing the intentions of
others? The two types of brain representation must in some sense be
distinct, seeing as we can represent other agents' intentions without
those intentions controlling our own behaviour. How might this
distinction between 1st-person and 3rd-person intentions be
explained?

3) Can we distinguish patterns of brain activity involved in commitment
to an intention as opposed to expectation or simulation of its
consequences?

Answering these questions is likely to benefit from further consider-
ation of domain-general processes that play a role in generating and
representing intentions, rather than necessarily conceiving of intentions
as a special type of mental state with distinct neural correlates.
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